欢迎访问易公教育官网 请登录 | 注册
  • APP
    APP
    易公教师app
  • 微信
    微信
    易公教育
    微信:ygteacher
  • 微博
    微博
    易公教育
    认证官方微博
    关注
400-8585-820

服务热线

400-8585-820
教 师招 聘 公告 备考资料 面试指导 历年真题 综合 幼教 语文 数学 英语 其他
教  师资格证 公告 普通话测试 历年真题 备考资料 试讲稿 面试指导 考试大纲
国编考试信息查询 国编职位/岗位查询 国编岗位入围分数线查询 国编考试成绩查询
易公知道 热门关键词: 入围分数线 考试公告 搜索
10元状元启航班2019笔试课程预交100抵4200
当前您的位置:易公教育 > 江西教师招聘 > 说课稿 > 说课

江西教师招聘面试高中数学说课稿:《基本不等式》

2018-04-18

来源:易公教育

分享到0

尊敬的各位考官大家好,我是今天的X号考生,今天我说课的题目是《基本不等式》。

接下来我将从教材分析、学情分析、教学重难点、教学方法、教学过程等几个方面展开我的说课。

一、说教材

我认为要真正的教好一节课,首先就是要对教材熟悉,那么我就先来说一说我对本节课教材的理解。《基本不等式》在人教A版高中数学必修五第三章第四节,本节课的内容是基本不等式的形式以及推导和证明过程。本章一直在研究不等式的相关问题,对于本节课的知识点有了很好的铺垫作用。同时本节课的内容也是之后基本不等式应用的必要基础。

二、说学情

教材是我们教学的工具,是载体。但我们的教学是要面向学生的,高中学生本身身心已经趋于成熟,管理与教学难度较大,那么为了能够成为一个合格的高中教师,深入了解所面对的学生可以说是必修课。本阶段的学生思维能力已经非常成熟,能够有自己独立的思考,所以应该积极发挥这种优势,让学生独立思考探索。

三、说教学目标

根据以上对教材的分析以及对学情的把握,结合本节课的知识内容以及课标要求,我制定了如下的三维教学目标:

(一)知识与技能

掌握基本不等式的形式以及推导过程,会用基本不等式解决简单问题。

(二)过程与方法

经历基本不等式的推导与证明过程,提升逻辑推理能力。

(三)情感态度价值观

在猜想论证的过程中,体会数学的严谨性。

四、说教学重难点

并且我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:基本不等式的形式以及推导过程。而作为高中内容,命题的严谨性是必要的,所以本节课的教学难点是:基本不等式的推导以及证明过程。

五、说教法和学法

那么想要很好的呈现以上的想法,就需要教师合理设计教法和学法。根据本节课的内容特点,我认为应该选择讲授法,练习法,学生自主思考探索等教学方法。

六、说教学过程

而教学方法的具象化就是教学过程,基于新课标提出的教学过程是师生积极参与、交往互动、共同发展的过程。我试图通过我的教学过程,打造一个充满生命力的课堂。

(一)新课导入

教学过程的第一步是新课导入环节。

我先PPT出示的是北京召开的第24届国际数学家大会的会标,会标是根据我国古代数学家赵爽的弦图设计的。

提问:你能在这个图中找到不等关系么?

引出课题。

通过展示会标并提问的形式,一方面可以引发学生的好奇心和求知欲,激发学生的学习兴趣;另一方面直入课题,可以很好的过渡到今天的主题内容:推导基本不等式。

(二)新知探索

接下来是教学中最重要的新知探索环节,

1.通过导入的问题,学生思考:通过赵爽弦图推可以发现哪些不等关系呢?

学生小组探究:利用赵爽弦图推导出基本不等式。

之后请学生把证明过程进行板书:

(2)“探究”,几何证明。

分析法是从结果入手,由果索因;几何法是由几何中的不等关系,进行证明。此类不等式的证明分析法理解简单,几何法稍难。学生通过两种证明过程,加深基本不等式的理解,还练习了证明方法。

至此本节课的主要教学内容已经完成,学生在我层次性问题的引导下,一步步通过自己的思考和探索,发现基本不等式,通过不同的方法证明了基本不等式。重点得以突出,难点得以突破。

(三)课堂练习

当然一节课只得出结论还是不够的,作为一节数学课要及时对知识进行应用。所以我设计了如下两道课堂练习:

(2)一段长为36m的篱笆围成矩形菜园,问这个矩形的长、宽各为多少时菜园面积最大?最大面积是多少?

这样的问题能够兼顾到本节课的所有主要内容,并且问题具有层次性,能让学生初步感知基本不等式应用中“积定和最小,和定积最大”的规律,为后续基本不等式的应用做好了铺垫,利于学生的思维发展。

(四)小结作业

在课程的最后我会提问:今天有什么收获?

引导学生回顾:基本不等式以及推导证明过程。

本节课的课后作业我设计为开放性问题:思考还有什么方法能够证明基本不等式?可以利用书本资料,也可以上网查阅资料。

这样的作业设置能够有效激发学生思考,不限制学生的思维,真正做到以学生为主体,让学生学会自主学习。

七、说板书设计

我的板书设计遵循简洁明了突出重点部分,以下是我的板书设计:

相关阅读推荐
在线问答
我要提问?
姓名 手机号

总校地址:南昌·北京东路与上海北路交汇处(四平家电四楼)

联系电话:400-8585-820 0791-88505232

联 系 人:易公教育

手机号码:18970098020

责任编辑:易公教育网络部

编  辑:易公教育网络部

编辑邮箱:2431388966@qq.com

总部邮箱:2431388966@qq.com

版权所有:江西易公教育咨询有限公司 - 赣ICP备15000648号-1

总校地址:南昌·北京东路与上海北路交汇处(四平家电四楼)  联系电话:400-8585-820  

 
QQ在线咨询
免费咨询热线
400-8585-820
您输入的邮箱不正确!